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Abstract

In this paper, we address a scheduling problem related to people’s livelihood, such as road construction works that

include laying pipes for gas, water and phone. The problem is a multi-processing-stage open shop with the characteristics

of movable dedicated machines and no-wait restriction, also known as no intermediate queue. The objective is to schedule

the jobs such that the total occupation time for all the processing stages is minimized. Some two-phase heuristic algorithms

are proposed for solving the problem. Computational results show that the heuristic is fairly effective in finding an optimal

or a near-optimal solution for small-sized problems. Results of the heuristic for experiments tallied with the real-life

environment demonstrate the potential of the heuristic to efficiently deal with the scheduling problems.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The problems of how to handle properly road
construction works such as laying pipes for water
supply, gas supply and power networks are fre-
quently encountered by section chiefs. Suppose
there are n construction units such as companies
of gas supply, water supply, and power supply, each
proposes a job for laying pipes on m sections of
road. The m sections of road can be regarded as m

processing stages. Each job processed on each
section of road can then be regarded as an operation
e front matter r 2007 Elsevier B.V. All rights reserved
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on the processing stages. The processing time of
operations may be assumed to be zero if such
operations need not be implemented at some
processing stages. For each construction unit, the
sequence of operations that will be processed on
those sections of road is adjustable. Each job is
processed with a dedicated machine owned by each
construction unit. These construction units move
the dedicated machines to the sections of road when
the operations are processed. With a consideration
of efficiency, the m operations of each job should be
processed continuously on the m sections of road
meaning no-wait restriction, and hence, the dedi-
cated machines will be shifted to the pre-determined
sections of road immediately as the need arises.
It is possible for different jobs to be processed
.
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simultaneously on the same section of road. The
aspiration to reduce the period of social costs such
as air pollution, traffic congestion and others
depends on an adequate arrangement of the n jobs
that minimize the total occupation time of the m

sections of road.
The scenario of the previous problem can be

illustrated as a scheduling problem of n jobs with
dedicated machines to be processed on m processing
stages of an open shop. The constraint of the
problem is that each job has to be processed on the
m processing stages with no-wait. The scheduling
objective is to minimize the total occupation time of
the m processing stages, denoted by D. The
performance measure D expresses the idea of social
costs or environmental responsibility. Concerning
the scheduling study of taking into account envir-
onmental cost, Subai et al. (2006) particularly
emphasize the environmental criterion, which is
characterized by energy consumption and creation
of polluted water and sludge, in a treatment surface
line scheduling problem.

According to the classification of Graham et al.
(1979), the addressed problem can be expressed as
Om/no-wait/D. Lots of researchers have devoted
efforts to the open shop scheduling problems with
one machine fixed on each processing stage. With
respect to the open shop scheduling problems with
the objective of minimizing makespan (Cmax), Pine-
do (1995) proposed the scheduling rules using the
longest alternate processing time first (LAPT) and
the longest total processing time (LTPT) for the
problems with two processing stages and more than
two processing stages, respectively. Adiri and
Aizikowitz (1989) proposed a scheduling rule under
the specific production condition when one proces-
sing stage dominates other processing stages. Liaw
(2000) developed a hybrid genetic algorithm that
comprises tabu search and genetic algorithm.
Concerning open shop with total tardiness or total
completion time performances, Liaw (2003) pro-
posed an efficient tabu search approach to deal with
the preemptive scheduling problem of minimizing
total tardiness. Later, he proposed a dynamic
programming algorithm to solve the problem of
minimizing total completion time (

P
Cj) (Liaw,

2004). Lauff and Werner (2004) investigated the
complexity and properties of the scheduling pro-
blem with earliness and tardiness penalties. Con-
cerning multi-criteria problems, Kyparisis and
Koulamas (2000) proposed a scheduling rule with
complexity of polynomial time that first minimizes
Cmax and then minimizes
P

Cj. Gupta et al. (2003)
proposed insertion and iterative heuristic algorithms
for the problems with secondary criteria where the
primary criterion is the minimization of Cmax and
the secondary criterion is the minimization of the
total flow time, total weighted flow time, or total
weighted tardiness time. Konno and Ishii (2000)
investigated open shop scheduling problem of
maximizing the minimum value of satisfaction
degrees with respect to the processing intervals of
jobs and the resource amounts used in the proces-
sing intervals with flexible deadline and resource.

Due to some characteristics of the circumstances
and processing technology, the operations of a job
must be performed without any waiting between
stages, which is known as no-wait restriction. For
the case of an open shop no-wait scheduling
problem, most of the previous research has been
focused to two-processing-stage or m-processing-
stage problems, where all operations have equal
processing times. For the two-processing-stage open
shop no-wait scheduling with Cmax as the objective,
Sidney and Sriskandarajah (1999), Yao and Soe-
wandi (2000) and Liaw et al. (2005) proposed
heuristics to solve the problem. Adiri and Amit
(1984) proposed a scheduling rule for the m-
processing-stage open shop to minimize

P
Cj with

no-wait and all operations have equal processing
times. They also developed a heuristic rule to
minimize

P
Cj and Cmax simultaneously where all

operations have equal processing times.
Concerning linear programming (LP) formula-

tions for solving the open shop scheduling pro-
blems, Liaw (2005) presented a LP formulation for
the preemptive open shop scheduling problem to
minimize total tardiness if the sequence in which
jobs are completed is known. Noda et al. (2006)
proposed a LP formulation to find feasible sche-
dules for the preemptive open shop scheduling
problem with time-windows, where the release times
are always satisfied and lateness is not permitted,
and then they made use of the formulation to solve
the problem where the objective is to minimize
Cmax.

The paper is organized as follows. The properties
of the addressed problem are illustrated by a
numerical example in Section 2. The mixed integer
programming (MIP) formulations for modeling the
scheduling problem are presented in Section 3.
Some properties of an optimal schedule will be
explored in Section 4 for the purpose of developing
heuristic algorithms. Some efficient two-phase
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heuristic algorithms are presented in Section 5.
Computational results and analysis are presented in
Section 6 and conclusions are made in Section 7.

2. Illustration of problem scenario

Suppose there are two construction units: a gas
supply company and a water supply company. Each
of them proposes a construction work of laying
pipes named jobs 1 and 2, respectively. These two
jobs will be processed at three road sections
regarded as processing stages 1, 2 and 3, respec-
tively. Each of the two companies processes its
works with dedicated equipment named machines A
and B, respectively, which can be moved to these
three road sections as the need arises. The sequence
of the construction works at these three road
sections, for the two construction units, is arranged
arbitrarily. For example, the gas supply company
can schedule its works at these three road sections
with the sequence of processing stages 1-2-3 or 2-1-3
or others. Table 1 depicts the data for each job of
each construction unit. Fig. 1 illustrates an example
of two jobs processed at three processing stages.

The rectangles with bold frame represent that job
1 is processed with the operation sequence of O11-
O12-O13-, or with the processing stage sequence of 1-
2-3. The other rectangles with normal frame
represent that job 2 is processed with the operation
sequence of O21-O22-O23, or with the processing
stage sequence of 2-1-3. The operations of both jobs
satisfy the no-wait restriction. O11 and O21 are
processed simultaneously at processing stage 1 in
the period [7,8]. O13 and O23 are also processed
simultaneously at processing stage 3 in the period
[20,26]. From this example, the occupation times of
processing stages 1–3 are in the periods [0, 16], [0,
20] and [16, 32], respectively. The total occupation
time of the three processing stages is calculated as
(16�0)+(20�0)+(32�16) ¼ 52.
Table 1

The data for two jobs processed at three processing stages

Construction unit Gas supply

company

Water supply

company

Job j Job 1 Job 2

Dedicated machine A B

Processing stage (k) 1 2 3 1 2 3

Operation k of job j (Ojk) O11 O12 O13 O21 O22 O23

Processing time (tjk) 8 12 6 9 7 16
3. MIP model

In this section, a MIP model is presented for the
addressed scheduling problem. For notation used,
see Table 2.

Minimize D ¼
Xm

k¼1

ðCmax;k � Amin;kÞ. (1)

Subject to
Xm

s¼1

yjks ¼ 1; j 2 J; k 2 K . (2)

Xm

k¼1

yjks ¼ 1; j 2 J; s 2 S. (3)

Cjk ¼ tjk þ
Xm

s¼2

Xm

l¼1;lak

Xs�1
h¼1

ðyjks � yjlh � tjlÞ; j 2 J ; k 2 K .

(4)

Ajk ¼ Cjk � tjk; j 2 J; k 2 K . (5)

Cmax;kXCjk; j 2 J; k 2 K. (6)

Amin;kpAjk; j 2 J; k 2 K . (7)

CjkX0; j 2 J; k 2 K . (8)

AjkX0; j 2 J; k 2 K . (9)

yjks 2 f0; 1g; j 2 J; k 2 K ; s 2 S. (10)

The objective function (1) is to minimize the total
occupation time of the m-processing stages. Con-
straint (2) indicates that each operation of a job
must be arranged exactly in one position of the
sequence. Constraint (3) indicate s that only one of
the m operations of job j can be arranged in a
specific position of the sequence. Constraint (4)
identifies the completion time of Ojk under the no-
wait restriction. The meaning of other constraints is
evident. The total number of variables in this MIP
model is mðnmþ 2nþ 2Þ, in which there are nm2

binary variables. Consequently, the total number of
constraints is 8nm.

According to the data in Table 1 and the schedule
in Fig. 1, the values of variables in this model are as
follows:

Objective function (1) D ¼ ð16� 0Þ þ ð20� 0Þ þ
ð32� 16Þ ¼ 52
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Fig. 1. Example of two jobs processed at three processing stages.

Table 2

Notation

Indices

j ¼ job, jAJ ¼ {1, 2 ,y, n}.

k ¼ processing stage, kAK ¼ {1, 2 ,y,m}.

s ¼ position of the sequence, sAS ¼ {1, 2 ,y,m}

Input parameters

tjk ¼ processing time of Ojk. Set tjk ¼ 0 if job j has no operation

at processing stage k

Decision variables

yjks ¼ 1, if operation Ojk is in the sth position of the sequence;

otherwise yjks ¼ 0.

Cjk ¼ the completion time of Ojk.

Ajk ¼ the starting time of Ojk.

Cmax,k ¼ the latest completion time of processing stage k.

Amin,k ¼ the earliest starting time of processing stage k.
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Constraints (2) and (3)

y111 ¼ 1; y112 ¼ 0; y113 ¼ 0,

y121 ¼ 0; y122 ¼ 1; y123 ¼ 0,

y131 ¼ 0; y132 ¼ 0; y133 ¼ 1,

y211 ¼ 0; y212 ¼ 1; y213 ¼ 0,

y221 ¼ 1; y222 ¼ 0; y223 ¼ 0,

y231 ¼ 0; y232 ¼ 0; y233 ¼ 1.

ð4Þ C11 ¼ 8; C12 ¼ 20; C13 ¼ 26; C21 ¼ 16,

C22 ¼ 7; C23 ¼ 32.

ð5Þ A11 ¼ 0; A12 ¼ 8; A13 ¼ 20; A21 ¼ 7,

A22 ¼ 0; A23 ¼ 16.
ð6Þ Cmax;1 ¼ 16; Cmax;2 ¼ 20; Cmax;3 ¼ 32.

ð7Þ Amin;1 ¼ 0; Amin;2 ¼ 0; Amin;3 ¼ 16.

The optimal schedule for the illustrating example
is with the operation sequence of O11-O12-O13 for
job 1 and O21-O22-O23 for job 2. Fig. 2 describes the
situation of each job processed at each stage. The
minimal total occupation time of the three proces-
sing stages is 37 ( ¼ 9�0+20�8+32�16).
4. Exploring the phenomenon of optimal schedules

With respect to the complexity of the open shop
problem, Gonzalez and Sahni (1976) proved that
the complexity for minimizing Cmax of the three-
processing-stage is NP hard. Later, Sahni and Cho
(1979) showed the complexity for minimizing Cmax

of the two-processing-stage with no-wait restriction
is strongly NP-hard. The performance measure of

the problem under consideration, D ¼
Pm

k¼1

ðCmax;k � Amin;kÞ, is equivalent to D ¼
Pm

k¼1wk

Cmax;k �
Pm

k¼1vkAmin;k, where the values of weights

wk and vk (k ¼ 1, 2 ,y,m) equal to 1. By setting all
the values of weights equal to zero, except for the
weight of C�max ¼ max

k2K
fCmax;kg, the problem be-

comes a special case of the addressed problem. The
performance measure D ¼ C�max is equivalent to

makespan. The number of processing stages of the
addressed problem is usually greater than three. As
this special case of open shop no-wait scheduling
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Fig. 2. The optimal schedule for two jobs processed at three processing stages.
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problem is shown to be NP-hard, the addressed
problem is also NP-hard. Hence, we dedicate our
efforts to develop heuristic algorithms to find an
approximate solution.

Exploring the properties of the optimal schedule
will contribute to the development of heuristic
algorithms. Owing to the complexity of the ad-
dressed problem, small-sized problems are designed
deliberately for the experiment. The number of jobs
and the number of operations in the test problems
are set at three levels of 3–5, respectively. Conse-
quently, nine combinations of the test modules are
available. The MIP model is employed to formulate
the designed problems. A package of LINGO is
used to solve the formulated problems. If the
sequences of operations of each job are identical
for all jobs in a test problem, we can conclude that
the property of the optimal schedule is of flow
shop type. Otherwise, it will be regarded as
having the property of job shop type. In order to
explore the property of an optimal schedule
influenced by the distribution of operation proces-
sing time, two approaches are used to generate the
processing time.

4.1. Complete random design

The processing time of each operation of each job
is generated randomly using a uniform distribution
of parameters [1,10], which follows the methods
proposed by Schaller (2001). Twenty test problems
are generated for each test module. The experi-
mental results indicate that 162 of the 180 test
problems obtained the optimal schedules as of flow
shop type. For the other 18 test problems currently
with the property of job shop type, if we give them
another run, some of them may get the same value
of performance measure but with the property of
flow shop type. Consequently, we can conclude that
there are more than 90% ( ¼ 162/180) of the
complete random design (CRD) test problems
having the property of flow shop type.

4.2. Block random design

Using the analog of the method proposed by
Schaller (2001) to generate the family set-up time,
we generate randomly the processing time for
the operations using a uniform distribution with
the following three sets of parameter values:
(i) [1, 20], (ii) [21, 50], (iii) [51, 100]. Twenty test
problems are generated for each test module.
The deployment of the processing time is displayed
in Table 3.

The experimental results indicate that 175 of the
180 test problems obtained the optimal schedules as
of flow shop type. Because optimal schedules of
both flow shop and job shop types may exist for the
other five test problems, we can conclude that more
than 97% ( ¼ 175/180) of the block random design
(BRD) test problems possess the property of flow
shop type.
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Table 3

The deployment of the processing time

Operation Job

1 2 3 4 5

1 [1, 20] [21, 50] [51, 100] [1, 20] [21, 50]

2 [21, 50] [51, 100] [1, 20] [21, 50] [51, 100]

3 [51, 100] [1, 20] [21, 50] [51, 100] [1, 20]

4 [1, 20] [21, 50] [51, 100] [1, 20] [21, 50]

5 [21, 50] [51, 100] [1, 20] [21, 50] [51, 100]
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5. Heuristic algorithms

The philosophy of two-phase heuristic approach
to the scheduling problems (Suliman, 2000; Lin and
Liao, 2003) is employed to develop a solution
procedure for the addressed problem. An initial
sequence is developed by proper methods in the first
phase and then this sequence is improved iteratively
in the second phase.

5.1. Phase I—developing an initial sequence

In the previous section, the 360 test problems
reveal that more than 93% [(162+175)/360] of the
optimal schedules have the property of flow shop
type. For this reason, we develop the forward and
backward recursive algorithms to generate the
operation sequences according to flow shop type.
The sequence with smaller value of the two
performance measures will be selected as the initial
sequence.

5.1.1. Forward recursive algorithm

An algorithm that arranges forwardly the opera-
tion sequence of each job is named forward
recursive algorithm. For each of the processing
stages, reducing the difference between the latest
completion time and earliest completion time will
shorten the occupation time. Therefore, when we
are considering the operation which will be ar-
ranged in the gth (g ¼ 1, 2 ,y,m�1) position of the
sequence, we check each of the m�g+1 undeter-
mined operations and estimated the latest comple-
tion times and earliest completion times of the
processing stages. The operation that gives the
minimal difference of the estimated latest comple-
tion time and earliest completion time is arranged in
the gth position of the sequence. The steps of the
algorithm are described as follows:
Step 1: Set g ¼ 1, J ¼ {1, 2 ,y, n}, K ¼ {1,
2 ,y,m} and K0 ¼+.

Step 2: Let Tjk ¼ tjk þ
P

k02K 0tjk0 ; j 2 J, k 2 K .
Step 3: Calculate dk ¼ max

j2J
fTjkg �min

j2J
fTjkg,

k 2 K .
Step 4: Let dk� ¼ min

k2K
fdkg, if there is more than

one index k* taking on this value, perform the
calculation in Step 3 in which the min{Tjk} will be
replaced with the second minimum and so on until
only one index k* is identified.

Step 5: The operation k* of each job, denoted by
O�k� , is arranged in the gth position of the sequence,
reset g ¼ g+1.

Step 6: Reset K ¼ K\k� and K 0 ¼ K 0 [ fk�g.
Step 7: If g ¼ m, terminate the algorithm. The

operation sequence along with the associated total
occupation time is obtained. Otherwise, go back to
Step 2.

5.1.2. Backward recursive algorithm

An algorithm that arranges the operation se-
quence backwardly for each job will be called
backward recursive algorithm. For each of the
processing stages, reducing the difference between
the earliest starting time and latest starting time will
shorten the occupation time. Therefore, when we
are considering the operation which will be ar-
ranged in the gth (g ¼ m, m�1 ,y, 2) position of the
sequence, the earliest starting time and latest
starting time occurring somewhere on the undeter-
mined g processing stages are estimated. The
operation that gives the minimal difference of the
estimated earliest starting time and latest start-
ing time is arranged in the gth position of the
sequence. The steps of the algorithm are described
as follows:

Step 1: Set g ¼ m and K ¼ {1, 2 ,y,m}.
Step 2: Calculate

dk ¼ max
j2J

X

l 2 K

lak

tjl

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

�min
j2J

X

l 2 K

lak

tjl

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;

; k 2 K .

Step 3: Let dk� ¼ min
k2K

dkf g, if there is more than

one index k* taking on this value, perform the
calculation in Step 2 in which the min{

P
tjl} will be

replaced with the second minimum and so on until
only one index k* is identified.
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Step 4: The operation k* of each job, denoted by
O�k� , is arranged in the gth position of the sequence,
reset g ¼ g�1.

Step 5: Reset K ¼ K\k�.
Step 6: If g ¼ 1, terminate the algorithm. The

operation sequence along with the associated total
occupation time is obtained. Otherwise, go back to
Step 2.

5.2. Phase II—the iterative improvement procedure

The procedure is performed by altering the
operations in the adjacent positions of the sequence.
We now elaborate the principle in detail. Consider
two operations of job x, Oxa and Oxb, where Oxa

and Oxb are in the sth and s+1st positions of the
sequence, respectively. That is, Oxa is processed
immediately preceding Oxb, denoted by Oxa-Oxb.
If the sequence is altered to Oxb-Oxa, the
performance measure D may be varied. The change
in the value of D is analyzed as follows:
(i)
 Axb and Cxb are advanced by the period txa

because of the alteration. As Amin,b and Cmax,b

are probably advanced, and hence, the value of
D may be varied. The increment in the value of
D caused by advancing Axb and reduction in
the value of D caused by advancing Cxbare
calculated as Dþb ¼ maxfAmin;b � ðAxb � txaÞ; 0g
and D�b ¼ min

j2J ;jax
fCmax;b � Cjb; txag, respec-

tively.

(ii)
 Axa and Cxa are postponed for the period txb

because of the alteration. As Amin,a and Cmax,a

are probably postponed, and hence, the value
of D may be varied. The increment in the value
of D caused by postponing Cxa and reduction in
the value of D caused by postponing Axa are

calculated as Dþa ¼ maxfCxa þ txb � Cmax;a; 0g
and D�a ¼ min

j2J;jax
fAja � Amin;a; txbg, respectively.
(iii)
Table 4

Processing time for three jobs at four processing stages
The change in the value of D caused by the
alteration is calculated as D� ¼ ðD�a þD�b Þ�

ðDþa þDþb Þ. If the value of D� is greater than
zero, meaning the performance measure is
improved, the alteration is performed.
tjk Job j

1 2 3

Processing stage (k) 1 33 18 20

2 43 33 42

3 44 7 8

4 6 3 41
Consider the example illustrated in Fig. 1. If the
sequence O22! O21 is altered to O21! O22, the
change in the value of D is analyzed as follows: (i)
Dþ1 ¼ 0 and D�1 ¼ 7 caused by advancing A21 from
7 to 0 and C21 from 16 to 9, respectively. (ii) Dþ2 ¼ 0
and D�2 ¼ 8 caused by postponing C22 from 7 to 16
and A22 from 0 to 9, respectively. (iii) As
D� ¼ 7þ 8� 0 ¼ 15, meaning reduction of 15 in
the value of D, the alteration is performed. The
updated sequence is illustrated in Fig. 2.

The iterative improvement procedure is per-
formed as follows:

Step 0: Initially, set I ¼ 1, j ¼ 1 and s ¼ 1.
Step 1: Identify the operations of job j in the sth

and s+1st positions of the sequence, denoted by
Oja! Ojb. Consider to alter sequence Oja! Ojb to
Ojb! Oja and calculate the associated value of �.

Step 2: If the value of D� is greater than zero,
perform the alteration and calculate D ¼ D�D�.
Otherwise, maintain the original sequence.

Step 3: If som� 1, let s ¼ sþ 1, go back to Step
1; otherwise, continue.

Step 4: If jon, let j ¼ j+1 and reset s ¼ 1, go
back to Step 1; otherwise, continue.

Step 5: If I ¼ 5, the procedure is terminated and
the heuristic is obtained; otherwise, let I ¼ I+1 and
reset j ¼ 1 and s ¼ 1, go back to Step 1.

5.3. Numerical example

A three-job, four-operation open shop scheduling
problem shown in Table 4 is solved to illustrate the
heuristic algorithms. By performing the forward
recursive algorithm, the three jobs are processed
with the operation sequence of O�2 �O�1�

O�4 �O�3, the total occupation time of the four
processing stages is 210. By performing the back-
ward recursive algorithm, the operation sequence
and the total occupation time are identical with the
results for the forward recursive algorithm. As a
result, the initial sequence along with the associated
performance measure of this problem is O�2 �O�1�

O�4 �O�3 and 210. By performing the iterative
improvement procedure, the sequence O24! O23 is
altered to 23! O24 which causes reduction of four
in the performance measure. As a result, the
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operation sequences are O12-O11-O14-O13, O22-O21-
O23-O24 and O32-O31-O34-O33 for jobs 1–3, respec-
tively, and the value of heuristic performance
measure, Dheu, is 206. This problem is also formu-
lated with the MIP model and solved with the
software LINGO. The optimal operation sequences
for jobs 1–3 along with the optimal performance
measure, Dopt, are identical with the heuristic.
6. Computational results and analysis

To test the effectiveness of the heuristic, the
heuristic algorithms are employed to solve the pre-
vious 360 CRD and BRD test problems. The
performance of the heuristic is evaluated by
comparing its solution with the optimal solution
obtained by the MIP model. The computational
results are summarized in Table 5, where the
percentage error of heuristic from optimum is
calculated as ðDheu �DoptÞ � 100%=Dopt. The aver-
age % error of the heuristic are 0.27%, 0.22% and
0.25% of the CRD, BRD and overall test problems,
respectively. The heuristic produced a solution with
optimum in approximate 91% ( ¼ 164/180), 87%
( ¼ 157/180) and 89% ( ¼ 321/360) of the CRD,
BRD and overall test problems, respectively.

The heuristic algorithms perform better with
BRD test problems in respect of aggregate % error,
comparing to CRD test problems. This is probably
due to the development of the initial sequence,
which is based on flow shop type, and the
proportion of BRD test problems possessed the
Table 5

Computational results of the heuristic

Scales of module CRD

No. of jobs No. of operations % Error

Min. Mean. M

3 3 0 0.00 0

3 4 0 0.09 1

3 5 0 0.56 5

4 3 0 0.00 0

4 4 0 0.41 6

4 5 0 0.76 5

5 3 0 0.00 0

5 4 0 0.10 2

5 5 0 0.51 4

Aggregate 0 0.27 6

ae0 denotes the number of times that the optimal solution is obtaine
property of flow shop type (97%) is greater than the
proportion of CRD test problems (90%). In
general, the results indicate that the heuristic is
fairly effective in finding an optimal or a near-
optimal solution for small-sized problems.

To evaluate the performance of the heuristic
algorithms for real-life environment, experiments on
six larger test modules are conducted. In practice,
the construction units proposed jobs for laying
pipes on roads probably include water supply, gas
supply, power supply, phone and TV cable compa-
nies, and hence, it is reasonable to set the maximal
number of jobs as five. In the larger test modules,
the number of jobs is set as five and the numbers of
sections of road, meaning numbers of processing
stages, are set as 8, 10, 12, 15, 18 and 20,
respectively. Twenty test problems are generated
for each of the test modules, where the processing
time follows the previous distributions for CRD and
BRD test problems, respectively. Due to the
complexity of the addressed problem, to find a
precise lower bound is very difficult, and hence, the
sum of maximal processing time of each processing
stage is used as a benchmark for evaluating the
performance of the heuristic. The benchmark, B, is

calculated as B ¼
Pm

k¼1 max
j2J
ftjkg. We define the

percentage error of heuristic from benchmark as
Bheu ¼ ðDheu � BÞ � 100%=B, the percentage error
of optimum from benchmark Bopt ¼ ðDopt � BÞ�

100%=B. For the numerical example illustrated in
Table 4, B ¼ 33+43+44+41 ¼ 161 and Bheu ¼

ð206� 161Þ � 100%=161 ¼ 27:95%. The value of
BRD

% Error

ax. e0
a Min. Mean. Max. e0

a

.00 20 0 0.00 0.00 20

.82 19 0 0.00 0.00 20

.41 16 0 0.53 4.42 14

.00 20 0 0.00 0.00 20

.67 18 0 0.08 0.89 18

.08 16 0 0.84 5.92 12

.00 20 0 0.00 0.00 20

.00 19 0 0.00 0.00 20

.26 16 0 0.57 3.87 13

.67 164 0 0.22 5.92 157

d.



ARTICLE IN PRESS

Table 6

Computational experience of the heuristic for further experiments

Scales of module CRD BRD

No. of jobs No. of operations Bheu (Bopt) Bheu (Bopt)

Min. Mean. Max. Min. Mean. Max.

3 3 0 (0) 19.50 (19.50) 65.22 (65.22) 0 (0) 5.98 (5.98) 16.06 (16.06)

3 4 0 (0) 25.33 (25.19) 76.47 (76.47) 0 (0) 7.38 (7.38) 18.21 (18.21)

3 5 0 (0) 19.54 (18.92) 51.06 (51.06) 0 (0) 6.42 (5.87) 14.83 (14.83)

4 3 0 (0) 19.35 (19.35) 40.00 (40.00) 0 (0) 6.01 (6.01) 17.39 (17.39)

4 4 8.57 (8.57) 37.14 (36.50) 97.22 (94.44) 0 (0) 12.64 (12.55) 20.30 (20.30)

4 5 4.08 (4.08) 31.84 (30.88) 74.36 (74.36) 3.65 (3.65) 12.91 (11.97) 26.03 (26.03)

5 3 12.00 (12.00) 31.82 (31.82) 58.33 (58.33) 2.20 (2.20) 9.53 (9.53) 17.84 (17.84)

5 4 10.81 (10.81) 34.76 (34.61) 72.22 (72.22) 2.91 (2.91) 13.93 (13.93) 29.14 (29.14)

5 5 20.83 (20.83) 42.41 (41.70) 79.07 (74.42) 5.31 (5.31) 17.47 (16.79) 34.44 (33.88)

5 8 11.29 45.73 94.03 5.48 15.36 26.10

5 10 11.76 43.79 86.36 4.29 13.04 21.88

5 12 11.96 44.02 93.06 4.33 10.47 25.75

5 15 16.67 47.76 98.36 5.12 12.25 23.21

5 18 17.91 43.92 80.29 5.18 13.37 23.78

5 20 14.10 47.68 95.65 7.69 15.65 36.38

Aggregatea 11.29 45.48 98.36 4.29 13.36 36.38

aIncludes the six larger test modules only.
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Bopt equals to the value of Bheu. The values of Bheu

and Bopt of the nine small-sized test modules and the
values of Bheu of the six larger test modules are
summarized in Table 6. For the nine small-sized test
modules of overall test problems, the values of Bheu

are close on the values of Bopt in maximal, average
and minimal percentage error, respectively. The
values of Bheu and Bopt for BRD test problems are
much less than the values for CRD test problems,
respectively. This is probably due to the processing
time generating methods, which generate larger
values of B for BRD test problems than for CRD
test problems.

For the six larger test modules of the CRD
test problems, the average value of Bheu is 45.48%,
which is close on 42.41% of the five-job, five-
operation test module. The maximal value of
Bheu is 98.36%, which is close on 97.22% of the
four-job, four-operation test module. For the six
larger test modules of the BRD test problems,
the average value of Bheu is 13.36%, which is
close on 17.47% of the five-job, five-operation test
module. The maximal value of Bheu is 36.38%,
which is close on 34.44% of the five-job, five-
operation test module. Computational results de-
monstrate the potential of the heuristic to efficiently
deal with the scheduling problems in real-life
environment.
7. Conclusions

In this paper, we have addressed an open shop
scheduling problem with the characteristics of
movable dedicated machines and no-wait restric-
tion. With a consideration of efficiency, the m

operations of each job should be processed con-
tinuously on the m sections of road meaning no-wait
restriction, and hence, the dedicated machines will
be shifted to the pre-determined sections of road
immediately as the need arises. It is possible for
different jobs to be processed simultaneously on the
same section of road. The objective of the schedul-
ing problem is to minimize the total occupation time
for all the processing stages meaning to reduce the
period of social costs such as air pollution, traffic
congestion and others. Some two-phase heuristic
algorithms are proposed for solving the problem.
An initial sequence is developed according to flow
shop type in the first phase, and then, the iterative
improvement procedure is performed in the second
phase. The heuristic produced an optimum solution
in approximate 89% of the 360 test problems with
the average and maximum % error of 0.25% and
6.67%, respectively. Computational results show
that the heuristic is fairly effective in finding an
optimal or a near-optimal solution for small-sized
problems. Results of the heuristic for experiments
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tallied with the real-life environment demonstrate
the potential of the heuristic to efficiently deal with
the scheduling problems.

In practice, section chiefs frequently encounter
problems related to people’s livelihood such as road
construction works that include laying pipes for gas,
water and phone can be dealt with by this approach.
The period of social costs such as air or noise
pollution, traffic congestion caused by road works
can be reduced by adequate arrangement of road
construction works that decreases the total occupa-
tion time. In this paper, some two-phase heuristic
algorithms that can reach satisfied solutions within
reasonable execution time are developed and can be
applied to the real-life problems.
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